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Al~'traet--The flows produced by a rotlet and a sphere rotating perpendicular to an interface separating 
two immiscible fluids are studied, and exact solutions are constructed in terms of the stream function and 
velocity. A comprehensive set of values for the torque acting on a sphere for various values of the 
parameters defining the ratio of sphere radius to its distance from the interface and the ratio of viscosities is 
g i v e u .  

INTRODUCTION 

The motion of a small particle which is near or at the fluid-fluid interface between two stratified 
immiscible fluids is of considerable interest in chemical engineering science because of its 
relevance to understanding the transport mechanics of filtration and the hydrodynamics of 
monomolecular surfactant layers. The general problem poses considerable mathematical 
difficulties as well as conceptual difficulties arising from the relevant physical processes because 
of the change in shape of the interface. This is particularly apparent when a particle straddles 
an interface and has a translational motion perpendicular to it. In this case consideration of the 
effect of the moving contact line must be taken into account. It is therefore not surprising that 
there are only three solutions for this type of problem available in the literature. First is the 
pure rotation of a sphere straddling and steadily rotating about a diameter perpendicular to an 
interface. This solution is given by Schneider et al. (1973) assuming a perfectly fiat interface 
throughout the motion. Second is the solution of Bart (1968) for the motion of a viscous fluid 
which moves normal to a fiat and non-deforming interface. In this work, a condition of zero 
normal velocity at the interface replaces the condition of continuity of normal velocity. The 
third solution is that of Ranger (1978) where a circular disc lying in the interface and 
instantaneously moving normal to it, is considered. Here the continuity conditions on the 
velocity and stress are adhered to, but the fluid motion is assumed to be quasi-steady Stokes 
flow with a deforming interface which instantaneously is assumed to be flat. 

The problem considered by Schneider et al. has the advantages that the motion is steady 
with a velocity parallel to the interface, and that the neglect of any departure of the shape of 
the interface from exactly planar does not lead to any great errors. This has been verified by the 
experiments of Kunesh (197 1) when one of the fluid phases is air, With these advantages in mind, 
our aim in this paper is to present a study of the axisymmetric rotation of a rotlet or solid sphere 
near a planar fluid-fluid interface. A rotlet can be of use in modelling an axisymmetric particle of 
arbitrary shape when it is sufficiently far away from the interface, and the solution to this problem is 
constructed in terms of a function proportional to the velocity. In this case, the motion of the fluids 
is truly steady as there is no motion perpendicular to the interface. The more general problem of a 
sphere rotating in the presence of an interface is solved by use of bispberical coordinates. The 
expression for the torque acting on the sphere is in the form of an infinite series and a 
comprehensive set of numerical values are given for its variation with the parameters defining the 
ratio of the sphere radius to its distance from the interface, and the ratio of viscosities. 
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AXISYMMETRIC ROTATION IN STOKES FLOW 

If the motion is slow the fluid velocity q can be written as 

q= V(x,p)~, [1] 
P 

where (x,p, ~) are cylindrical polar coordinates and d ,is the unit vector pendicular to the 
azimuthal plane ck -- constant, and in the sense of ck increasing, V(x, p) is a solution of 

L_I(V) __ (O0_~x2 0 2 1 0 \  [2] 

Consider the solution of [2] expressed by 

sin 2 0 _ 
V--- r - r "  [3] 

where x = r cos 0, p = r sin 0, define spherical polar coordinates. 
The surfaces V = constant correspond to the streamlines for an axisymmetric dipole located 

at the origin. The torque over a sphere typified by r = constant, is given by 

G=fof2"[r^R,]r2sinOdOdck [4) 

where the stress vector R, is 

rR, = - p r  +/t{(r • V)q-  q + V(q-  r)} 

V =-pr+.p.(r O -  1) rs-'~/p , [5] 

p being the pressure and/~ the viscosity. If [5] is substituted in [4] it is found that 

G = 8¢r~,£ [6] 

so that the torque is independent of r and is constant over any sphere concentric with the 
origin. The motion produced by [3] is that due to an axisymmetric rotlet located at the origin. 

Consider now a two phase flow of immiscible fluids in which the interface is defined by 
x = 0 and there is no normal component of velocity on the interface. The viscosity of the fluid 
for x > 0  is/z~ and/Zz for x <0. The motion is produced by an axisymmetric rotlet located at 
x = 1, p = 0. Appropriate forms for the velocity in the two regions x <> 0 are given by 

2 A 2  

V,-- R-~ +~2- ,  x>O,  [7] 

B 2 
V 2 = ~ - ,  x < 0 ,  [81 

where ~ = (Vj/p)~, R12= (x - 1)2+0 2, R22 = (x + 1)2+p 2 and A, B are constants. It is readily 
verified that Vt and V2 are solutions of [2] and A, B are to be determined by conditions at the 
interface. 

Now the interface conditions require that the velocity is continuous on x = 0, that is 

Vi = V2 at x=O [91 
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which yields 

1 + A = B. [I0] 

The normal and tangential components of stress are also continuous at the interface. The 
former condition is automatically satisfied and the latter can be expressed as 

aVl aV2 
/~l-~-x =/ t2-~x at x =0. [ll] 

This gives rise to 

A(I-A)=B, A ___P_2. [12] 
/t2 

Solving [10] and [12] determines A and B as follows: 

so that 

A = A - 1  B =  2A 
+----/' i + A [13] 

VI=R~i+\~-'~/R2J, x > 0  [14] 

V 2 = l +  A , X < 0 .  [15] 

Since  R2-> RI  in x -> 0 the  ve loci t ies  a re  b o t h  positive everywhere, and  o n  the  in t e r f ace  

2Ap 2 
El = V2 = ( l  + A)(1 + p2)3/2 [16] 

which is uniformly small when A is small or/~2 is large compared with ttl. In the limit A --,0, the 
solution for a rotlet in the presence of a plane is obtained. The analysis presented in this section 
is easily generalized to the situation of an additional rotlet in x <0. As Rt, R2.-,oo 

2A . ~  [17] 
VI= V2~ I+A Rt " 

SPHERE ROTATING PERPENDICULAR TO AN INTERFACE 

In this section the rotlet will be replaced by a sphere whose centre is fixed and is rotating 
about the axis of symmetry with angular velocity co. Again the fluid velocity ej (j = l, 2) is 
represented by 

= ~  [is] 

where L-I(Vj) ffi 0, j = 1, 2. The boundary and interface conditions are expressed by 

VI = cop 2 o n  sphere 
Vs = V2 at x = 0 

#Vi ~V2 
~ti-~-x = tt2-~-- x a t x = 0  

[19] 
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If bispherical coordinates are defined by 

= c s i n . q  , x =  c s i n h , ~  
P cosh 6 " c o s  7/ cosh ~ -  cos 

[20] 

then the sphere is typified by 6 = a, and suitable solutions for Vj, j = 1, 2 are given by 

Vl = ¢oc2(cosh ~ - COS 7)  -1/2 

x ~=l [Aa cosh (n + l)6 + Bn sinh (n +~)~]P.l(cos'q)sin vl 

V2 = ¢ac2(cosh ~ - cos ~/)-112 ~ Ca e(a+l/2h~Pnl(COS ~/) Sin 7" 

[21] 

[22] 

The interface conditions require that 

An =Ca, ~lBn = ~2Cn.  [231 

If ~z =/~2//~, then Aa = Ca, Bn = IzCa. 
Now on ~ = a 

sin ~ = 2~/2 ~ e-¢n+U2~Pnl(cos 7)- [24] 
(cosh a - cos 7/)3/2 n = i 

It follows that the boundary condition on the sphere is satisfied if 

2~/2 e -¢a+ln~ 

Ca= cosh (n +~)r,  + /~ sinh (n + 2 ) a .  [25] 

The coefficients An, Bn are then found from [23]. It is also easily verified that the velocities ej, 
j = 1, 2 vanish at infinity. 

The torque on the rotating sphere can be shown to be - T~ where 

T = 4~/2 ¢r/zcaa 3 sinh 3 a ~ n(n + 1)(A, + Bn). 
n~l 

[26] 

with a denoting the radius of the sphere. 
Now 

A. + B. = 2~/2(1 +/z) e -<"+u2k' 

cosh (n +~)a + p. sinh (n +~la 
4~/2(1 +/z) e -¢2n+l~ 

= 1 +/z + (1 - / z )  e -c2n+l~" 

Hence 
¢0 

T s i n h  3 a ~__~ n(n + 1) e :i2n+l)a 
¢ = 8¢r/~oa 3 = 4(1 +/z) {1 +/z + (1 - / z )  e -~2n+Da 

[27] 

~n(n + l )e  -~2"+1~ 
= 4 sinh 3 a 

n=l 1 +A e -(2n+l)a [28]  
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Table  1. 
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where A = (I-/~)/(I +/~). Thus • may be written as 

~- = 4 sinh s a ~ ~ e-~2"+l)~( - l)mA m e -~2~+I~'~ '[29] 
n=l m=0 

= 4 sinh 3 a ~ (-  1)'hA m ~ n(n + 1) e -a'+lxm+''" [30] 
mffiO nffil 

so that 

1- = sinh 3 a ~ ( -  I)mA ~ cosech 3 (m + Dot. [31] 
mffiO 

The following limiting cases are of interest 

(i) a -~0 ,  - ,  ~ (-,~)" 
I" ~ - - o ~  [321 

® ( -  1)" 3 
(E) p, ~ 0, I"--* ~ o  ~ = ~(3)  = 0.901543 [33] 

(iii) ,.-,oo, ¢-* s~_o(m~l+ 1 )=  ~(3)= 1,20206. [34] 

A table of numerical values for the torque is given. It is remarked that the more 
general problem of two spheres one in each phase rotating with unequal angular velocities can 
be treated by ,the same method. 
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